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ABSTRACT
Modeling buildings’ heat dynamics is a complex process which

depends on various factors including weather, building thermal

capacity, insulation preservation, and residents’ behavior. Gray-box

models offer an explanation of those dynamics, as expressed in

a few parameters specific to built environments that can provide

compelling insights into the characteristics of building artifacts. In

this paper, we present a systematic study of Bayesian approaches

to modeling buildings’ parameters, and hence their thermal char-

acteristics. We build a Bayesian state-space model that can adapt

and incorporate buildings’ thermal equations and postulate a gen-

eralized solution that can easily adapt prior knowledge regarding

the parameters. We then show that a faster approximate approach

using Variational Inference for parameter estimation can posit sim-

ilar parameters’ quantification as that of a more time-consuming

Markov Chain Monte Carlo (MCMC) approach. We perform ex-

tensive evaluations on two datasets to understand the generative

process and attest that the Bayesian approach is more interpretable.

We further study the effects of prior selection on the model pa-

rameters and transfer learning, where we learn parameters from

one season and reuse them to fit the model in other seasons. We

perform extensive evaluations on controlled and real data traces to

enumerate buildings’ parameters within a 95% credible interval.

CCS CONCEPTS
•Computingmethodologies→Latent variablemodels; •Math-
ematics of computing→ Bayesian computation; •Applied com-
puting → Physics;
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1 INTRODUCTION
Retrofitting an existing building often reduces its energy consump-

tion and particularly the heating and cooling costs. To assess the

effectiveness of the retrofit, auditors perform on-site tests to gauge

the insulation and infiltration quality of a house. However, such

tests are expensive and intrusive, and thus cannot be carried out

continuously. The proliferation of smart thermostats such as NEST

and Ecobee [23], and their acceptance and deployment in home

environments are opening up new research avenues. In the near

term, we envision a self-adaptive and programmable thermostat,

that can seamlessly receive environmental data from the indoor

and outdoors, and residents’ activities, to model the inherent ther-

mal characteristics of the building. Such a dynamic and adaptive

smart thermostat will provide an early assessment of the insulation

and leakage, and thus help promote energy sensitive actions and

maintain comfort levels.

Physicists have studied methods for modeling buildings’ thermal

conditions by way of several measurable parameters [10, 39]. In

these models, the thermal dynamics of a building are represented

by an RC-circuit, due to system equivalence, which allows us to

derive a set of stochastic differential equations that describe the

thermal patterns. The composite parameters resistance (R) and ca-
pacitance (C) of the circuit are analogous to the buildings’ insulation
(and to some extent the infiltration), and the thermal mass, respec-

tively. Building quality measurement uses standardized metrics

such as R-value (or U-value) to measure insulation and ACH50 to

measure infiltration. The thermal mass of a house is the ability

of a material to absorb and store heat energy. Optimization based
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techniques [16, 34] are popularly used to estimate the parameters,

where the objective is to reduce the error between observed and

predicted values. However, most approaches do not simultaneously

consider two key factors that are common in the real world:

• Stochasticity of the building parameters: The optimization-

based methods are effective for fitting a model to data, but

cannot provide a margin of error on the estimation. This is

important as stochasticity arises due to several unaccounted

factors, including human activity and home appliance usage,

which cannot be directly quantified.

• Presence of prior knowledge: It is common knowledge that

older buildings have poor insulation. Studies [2] show that

the average house size has increased with time, and that

larger homes typically have better insulation quality. By

incorporation of prior knowledge such as “How old is a build-
ing?” or “How much square footage does it have?”, these intu-
itions about a building’s condition can potentially increase

the accuracy of the estimated parameters.

To address these concerns, the Bayesian approach is a natural

and simple way to incorporate prior knowledge in the building

thermal modeling framework which also approximates the factors

influencing the model dynamics. It allows for comparisons among

multiple candidate models instead of performing binary hypoth-

esis tests on a single model. The Bayesian posterior distribution

plays the role of Occam’s razor, effectively penalizing an increase

in model complexity, such as adding variables, while rewarding im-

provements in fit. However, the existing Bayesian approaches have

a few notable limitations: (i) Bayesian inference of the parameters

is primarily performed with Markov Chain Monte Carlo (MCMC)

algorithms [13, 15] which take a long time to converge, and thus

are not well suited for the case where model complexity and/or data

size increase. (ii) A majority of previous works applied uninformed

normal priors and do not evaluate the effect of prior selection on

model performance. As such the full benefit of a Bayesian statis-

tical approach is not utilized. (iii) Finally, most studies limit their

scope to a single seasonal period, particularly in the winter when

residents use the HVAC in heating mode, and do not study how the

model parameters estimated in one season can be used to monitor

the house longitudinally.

To investigate these shortcomings and their resolution, in this

paper we present a systematic study of Bayesian approaches to the

modeling of buildings’ thermal dynamics. We propose a generalized

Bayesian State SpaceModel (BSSM) that can combine physics-based

thermal models into a probabilistic framework. We further embed

prior intuition and knowledge regarding buildings into the model

based on subjective beliefs. For example, in Figure 1, the probability

densities of the R-values of homes built before the year 2000 differ

depending on their size, in this case whether their area is less than

2000 square feet. We show how to incorporate such knowledge by

effective prior selection. However, such priors are not conjugate to

the likelihood and solutions cannot be computed analytically. We

thus perform inference based on algorithms that do not depend on

conjugacy, such as Automatic Differentiation Variational Inference,

and show that the buildings’ parameters can be estimated effec-

tively with such an approximate approach. We analyze the effect

of learning parameters from one season and use transfer learning

(a) House with floor area more than 2000 sq. ft.

(b) House with floor area less than 2000 sq. ft.

Figure 1: Distribution of R-values of houses

to estimate the thermal dynamics in a different season when the

HVAC is used in a different mode. We present two case studies on

real data traces to show the effectiveness of the Bayesian approach,

and the effects of prior selection and transfer learning across sea-

sons.

Key Contributions: Our innovations and results provide evi-

dence that the Bayesian approach to modeling a building’s thermal

characteristics is valuable. The primary contributions of our work

are as follows.

• Bayesian State Space Model: We propose a Bayesian state-

space model for estimating buildings’ thermal parameters.

Unlike previous methods [3, 20, 26, 28] which use point esti-

mates, our Bayesian model is capable of incorporating beliefs

using non-conjugate priors, and managing uncertainty in

the parameters. We infer the model parameters within a 95%

credible interval with a Mean Field Variational Approxima-

tion, and show that the estimates are as accurate as that of a

more time-consuming MCMC approach.

• Interpretable assessment of the generative model: We explore

the generative characteristics of the model by Monte-Carlo

simulation and forecasting, which helps understand the causal

physical process that describes the thermal behavior of a

house. We also test the quality of the models by forecasting

indoor temperature with the learned building parameters.

• Effects of transfer learning & prior selection: We propose a

transfer learning based approach by learning buildings’ pa-

rameters in summer, when HVAC is typically operational in

cooling mode, and used it to aid fitting the data in seasons

when HVAC is not used or operates in heating mode. We
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propose a systematic approach to prior selection to incorpo-

rate beliefs about the buildings’ characteristics in the model

and conducted rigorous experiments to study their behavior.

The rest of the paper is structured as follows. In Section 2 we discuss

related work on building parameter identification and Bayesian

estimation. In Section 3 we propose the Bayesian State Space model

for building parameter identification. In Section 4 we present two

case studies and provide analysis of the model and finally conclude

in Section 5.

2 RELATEDWORKS
In this section, we review the previous works in three major related

areas – parametric modeling of buildings’ thermal dynamics, tech-

niques for parameter estimation, and a brief review of Bayesian

inference.

Parametricmodeling of buildings’ thermal dynamics helps
to understand a building’s quality with few parameters. There are

three approaches for modeling buildings’ thermal dynamics –white-
box, black-box and gray-box modeling. white-box approach models

all physical processes of a building [19, 22] by formulating exact sys-

tem dynamics. Such deterministic models are difficult to construct

as the exact dynamics are often unavailable and due to the presence

of noise in the data, arising from unaccounted factors. Black-box
modeling approaches, such as regression, neural networks etc., are

applied to model indoor temperature as a function of observed data,

much like outdoor temperature [33]. However they do not describe

the generative process and thus isn’t effective for interpretation.

A gray-box model is a combination of prior physical knowledge

and statistical approaches. The heat dynamics of the building was

formulated using several equivalent models of varying complex-

ity in [3], that estimated the insulation and the thermal mass of a

building. An extension of such an approach included the effect of

wind speed on infiltration is proposed in [28], and expansionary

effect of air with temperature changes was modeled in [38].

Parameter estimation for the gray-box model was performed

in [26] by maximum likelihood estimation (MLE) and maximum

a posteriori estimation (MAP). An extension of the approach [14],

chose a simpler model to represent the dynamics and learned the

residuals separately with Gaussian priors. Other works have fo-

cused on optimization based techniques [28, 34], where the objec-

tive is to minimize deviation between measurements and predic-

tions from the model. Although, these approaches are simpler, they

do not incorporate noise estimation in the equations. Alternatively,

a Bayesian approach offers a natural way of dealing with parameter

uncertainty in a state space model [13, 15]. Bayesian methods have

been widely used for the closely related problem of building energy

modeling [17, 21, 24, 29], but have been less well studied in the

context of thermal modeling for buildings [3, 35]. A majority of

previous works have applied the Metropolis-Hastings algorithm

for Bayesian inference [17, 21, 24, 29, 35] which is ill-fitted for

the specific problem as it takes a large number of steps to achieve

convergence. The No U-Turn sampler (NUTS) showed better re-

sults [9] for parameter estimation in a related problem, building

energy models, so we choose the latter.

Bayesian Inference, as performed in the previous works, used

uninformed uniform priors and/or Normal priors for the model

parameters [3, 35]. Such assumptions do not hold true as the param-

eters typically have non-Normal distributions. Non-normal priors

do not have conjugacy with the likelihood, and analytical solutions

of the posterior distribution are not possible. In such cases, algo-

rithms that do not rely on conjugacy become important such as

MCMC and Variational Inference. MCMC algorithms are capable

of overcoming this problem but are time-consuming. Alternatively,

Variational Inference [4, 30] is an approximate inference that derives

a lower bound for the marginal likelihood which can be optimized

using stochastic gradient descent. In our experiments, we use the

Mean Field Variational Inference and find that it provides similar

parameter estimation to MCMC algorithms.

3 PROPOSED APPROACH
We follow the iterative modeling approach known as Box’s loop [6],

shown in Fig. 2, for estimating buildings’ thermal parameters. The

process starts with a collected and pre-processed dataset. We pro-

pose a Bayesian state space model to frame the problem and esti-

mate parameters using MCMC and Variational Inference. Finally,

we test for model convergence and measure the goodness of fit.

Infer Model
MCMC
Variational Inference
 

   Build 
Model
State Space Model

Criticize 
Model
Convergence 
check; Posterior 
Predictive Check

       DATA
Sensor data; 
weather data

          

     APPLY MODEL
Building quality assessment; Forecasting

Figure 2: Box’s Loop

3.1 Bayesian Linear State Space Model
The generalized linear state spacemodels consist of a sequence ofM-

dimensional observations (y1, y2, ... yN ), assumed to be generated

from latent D-dimensional states X = (x1, x2, ... xN ) and control

variablesU = (u1,u2, ...uN ). The dataY is generated by the following

state space equations:

xn = Axn−1 + Bun−1 +N(0,Q) (1)

yn = Cxn +N(0,R) , (2)

where Eqn. 1 is the state evolution equation (analogous to HMM

state transition) and Eqn. 2 is the observation or measurement equa-

tion (emission probability). The overall state transition probability

is given as

P (X |A, B) = N(x0 |m0, Λ
−1
0
) ×

N∏
n=1
N(xn |Axn−1 + Bun, diaд(τ −11

)) , (3)
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wherex0 is an auxiliary initial state withmeanm0 and a precision

matrix of Λ0 (the matrix inverse of the covariance matrix). The

emission probability is given by

P (Y |C, X , τ ) =
N∏
n=1
N(yn |Cxn, diaд(τ −1)) . (4)

Here Y is a normal distribution with mean CX and a covariance

matrix withdiaд(τ−1). The covariance matrixR is a diagonal matrix

as the noise is independent of the observed states Y . The graphical
nature of the BSSM model is shown in Fig 3, which is analogous to

an Input-Output HMM [5].

Figure 3: Bayesian State Space Model

3.2 Problem Formulation
We use an example to illustrate how to formulate a building’s ther-

mal equations and incorporate them into the proposed state space

model framework. Figure 4 shows an equivalent circuit that de-

scribes the thermal dynamics of a house.

Envelope
SolarInterior Heater

Ambient⇒EEF-

Figure 4: TiTe circuit model

In this example, called theTiTe model [3], we assume that there

are two latent state spaces Ti and Te that describes the indoor and
envelope temperatures. The thermal dynamics is represented by a

set of stochastic differential equations derived from the equivalent

assumption. The equations of the process are given by:

dTi =
1

RieCi
(Te −Ti )dt +

1

Ci
Φhdt +

Aw
Ci

Φsdt + σidωi (5)

dTe =
1

RieCe
(Ti −Te )dt +

1

RBeaCe
(Ta −Te )dt + σedωe (6)

Yk = Tik + ek , (7)

where t is the time, Rie is the thermal resistance between the

interior and the building envelope, Rea is the thermal resistance

between the building envelope and the ambient air, Ci is the heat
capacity of the interior, Ce is the heat capacity of the building en-

velope, Φh is the energy flux from the heating system, Aw is the

effective window area, Φs is the energy flux from solar radiation,

Ta is the ambient air temperature, {ωi,t } and {ωe,t } are standard
Wiener processes with variances σi and σe respectively, where t is
the point in time of a measurement. Yt is the indoor temperature,

Tik is the measured interior and ek is the measurement error, which

is assumed to be a Gaussian white noise process. Converting the

differential equations (Eqns 5–7) as difference equations we get the

transition and emission matrix form as:

[
Ti(t + 1)
Te(t + 1)

]
=

[
1 − 1

RieCi
1

RieCi
1

RieCe 1 − 1

RieCe −
1

RiaCe

]
×

[
Ti(t)
Te(t)

]
+

[
0

1

Ci
Aw
Ci

1

RiaCe 0 0

]
×


Ta(t + 1)
Φh (t + 1)
Φs (t + 1)

 +
[
σi 0

0 σe

]
(8)

Y (t) =
[
1 0

]
×

[
Ti(t)
Te(t)

]
+ σ . (9)

Eqn 8 is the state transition of the dynamic system and is equiv-

alent to the general form as presented in Eqn 1 that gives us the

transition probability, i.e P(xt+1 |xt ) ∼ N(AX + BU , Σw ) (Eqn 3).

Similarly, Eqn 9 is equivalent to the measurement equation pro-

vided by Eqn 2 that gives us the emission probability (Eqn 4). In

Eqn 8, the first two matrices models the physical dynamics and the

third matrix is the measure of stochasticity in the data. Similarly, in

Eqn 9, the first matrix is the measurement equation and σ is the er-

ror in measurement. In the base case, we assume an uninformative

Gamma prior over the model parameters and the hyper-parameters

of the gamma distribution are automatic relevance determination

(ARD) parameters, which prune out components that are not signif-

icant enough. We provide broad priors to the gamma distribution

by setting the shape and rate to a very small value [4]. Thus pa-

rameters are given as R ∼ Γ(α = δ , β = δ ), C ∼ Γ(α = δ , β = δ ),
Aw ∼ Γ(α = δ , β = δ ), where δ is a very small value. We also

impose a bound on the parameters, which can help by limiting

the parameters to certain reasonable ranges. We formulate other

instantiations of the physical models in the case studies presented

in Section 4.1.2.

3.3 Bayesian Inference
Bayesian inference recovers the posterior distribution over param-

eters and latent variables of the model, which can hence be used to

perform prediction. While exact solutions can be achieved for some

basic models, computing the posterior distribution is generally an

intractable problem, in which case approximate inference is needed.
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Markov chainMonte Carlo (MCMC) algorithms are a widely

applied method for approximate inference, which aims to estimate

the posterior using a collection of samples drawn from an appropri-

ate Markov chain. Hamiltonian Monte Carlo (HMC) [32] algorithms

such as NUTS avoid the random walk behavior by taking a series

of steps informed by first-order gradient information. These fea-

tures allow it to converge to high-dimensional target distributions

much more quickly than simpler methods such as random walk

Metropolis Hastings [41]. The No U-Turn Sampler (NUTS) [18]

uses a recursive algorithm to build a set of likely candidate points

that span a range of the target distribution, stopping automatically

when it starts to backtrack and retrace its steps, which prevents the

revisiting of previously explored paths. In this work, we select the

NUTS sampler for inference.

Another option is Variational Inference, which is a class of al-

gorithms that are deterministic alternatives to MCMC. This reduces

inference tasks to an optimization problem [7]. In a probabilistic

latent model setting, Y is the observed data, X is the latent variable

space and θ the model parameters. An approximating distribution

q(X ,θ ) over the latent variables and parameters, called the varia-
tional distribution, is constructed to approximate the posterior. The

objective is to reduce the “gap” between the variational and the

posterior distribution. This gap is given by the Kullback-Leibler

divergence, which is the relative entropy between the two distribu-

tions, given as:

KL(q(X , θ ) | |p(X , θ |Y )) = Eq
[
loд

q(X , θ )
p(X , θ |Y )

]
= Eq [loд q(X , θ )] − Eq [loд p(X , θ, Y )] + loд p(Y ) . (10)

In Eqn 10, loд p(Y ) is independent of the distribution q(X ,θ ), so
minimizing Eqn 10 is equivalent to maximizing:

L(q) = Eq [loд p(X , θ, Y )] − Eq [loд q(X , θ )]

= Eq [loд p(X , θ, Y )] + H (q) . (11)

Using Jensen’s inequality, L(q) can be shown to be a lower bound
on log p(Y ), and is hence known as the Evidence Lower Bound

(ELBO). To make inference tractable, we make simplifying assump-

tions on q. The most commonly used assumption is the mean-field

approximation, which assumes that the latent variables are indepen-

dent of each other. Thus the variational distribution with N latent

variables is assumed factorized as q(X ,θ ) = q(θ )
∏N

i=1 q(Xi ). Tradi-
tionally, a Variational Inference algorithm requires developing and

implementing model specific optimization routines. Automatic
Differentiation Variational Inference (ADVI) [27] proposes an

automatic solution to posterior inference. ADVI first transforms

the model into one with unconstrained real-valued latent variables.

Due to this transformation all the variables can be approximated

using a single variational family for all models. It then recasts the

gradient of the variational objective function as an expectation over

q. This involves the gradient of the log of the joint likelihood with

respect to the latent variable ▽θ loд p(x ,θ ), which is computed

using reverse-mode automatic differentiation [31]. The gradient ex-

pressed as an expectation then can be approximated with a Monte

Carlo integration. ADVI further reparameterizes the gradient in

terms of a standard Gaussian and uses noisy gradients to optimize

the variational distribution.

It is important to note the underlying assumptions of ADVI. It

factors the posterior distribution such that all the state variables are

statistically independent, following the mean-field approximation.

For a highly correlated posterior, e.g. in state space models, where

the intuition is that xt+1 ∼ N (xt ,θ ) will be highly correlated with

xt , the mean-field assumption is rather unrealistic. The method can

still work well in practice, however, as the (uncorrelated) q is fit to

the (correlated) p, thereby exploiting dependencies, even though

they are not ultimately encoded in q. NUTS, on the other hand, is

very good at exploring a correlated, high-dimensional distribution,

but can suffer in both run-time and convergence speed versus ADVI.

We empirically evaluate the effectiveness of these approximations

by comparing the parameters inferred by both the methods.

3.4 Model Criticism
Model criticism requires tests for convergence and testing goodness

of fit on held out data. Since the primary objective of the study is to

obtain the estimated parameter values, we also inspect the credible

interval of the parameters. If the region is too wide we infer that

the uncertainty in estimation is high.

Convergence Diagnostics:We select the Gelman-Rubin diag-
nostic [11], which checks for the lack of convergence by comparing

the variance between multiple chains to the variance within each

chain. Convergence is more straightforward to analyze for Vari-

ational Inference. The convergence criterion is simply to iterate

until the ELBO no longer increases.

Goodness of fit is tested using posterior predictive checks, which
are performed by simulating replicated data under the fitted model

and then comparing these to the observed data to look for system-

atic discrepancies between real and simulated data [12].

Credible Interval: The motivation behind using a Bayesian

approach is to find the range of possible values for the building

parameters. A standard measure of confidence in some (scalar)

quantity θ is the “width” of its posterior distribution. This can be

measured using a 100(1 - α )% credible interval, where we select α
as 0.05 to estimate parameters with a 95% probability,

Cα (D) = (l ,u) : P(l ≤ θ ≤ u |Y ) = 1 − α , (12)

where the interval for a parameter is bounded by (l,u) with a prob-

ability 1 − α . The credible interval is a Bayesian alternative to a

frequentist confidence interval. A frequentist keeps the parame-

ters fixed and varies the confidence interval whereas a Bayesian

approach is to keep the credible region fixed and vary the model

parameters.

3.5 Application of the Models
3.5.1 Exploration. In terms of building modeling, we are pri-

marily interested in learning the different R and C parameters. As

we consider different multi-state lumped models, the cardinality of

the sets R and C may vary but the overall values should remain

the same. To find the composite resistance of the equivalent cir-

cuit, the resistance and capacitance are obtained by Kirchoff’s law.

However, the simple addition or geometric sum required to com-

pute the composite parameters cannot straightforwardly be done
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as Bayesian Inference provides random variables rather than scalar

quantities. The distribution of the sum of two random variables can

be obtained by the convolution of their density functions.

Algorithm 1 Indoor Temperature Forecast

1: procedure Forecast (Input: Distribution of the model parameters θ =
{R, C, A, XT }, time window of forecast K )

2: Set start temperature state to XT
3: {Ri , Ci , Ai } <- Draw N Sample(R, C, A)

4: for i in 1 : N do
5: X (i )T+1:T+K ← BSSM (XT , Ri , Ci , Ai )
6: end for
7: Mean Prediction← E{X (i )T+1:T+K }

8: Credible Interval← {Max (X (i )T+1:T+K ) , Min(X (i )T+1:T+K )}
9: end procedure

3.5.2 Forecasting. We perform 24 hour ahead forecast, after

learning the parameters of the model. We assume that a outdoor

temperature forecast data is given to us and we assumed that the

HVAC is operational in the last known mode. The forecasting and

prediction of HVAC time is given in Algorithm 1.When the HVAC is

set to a particular temperature and assuming that it is not changed

within the horizon of the forecast, then the indoor temperature will

be centered around the set-point in a range known as the thermostat

hysteresis setting. In general, the range is ± δ lies within 0.5 – 1
◦
F.

We sample from the estimated parameters’ distributions to obtain

the forecasting interval.

3.6 Implementation
We implemented the Bayesian State Space model using the PyMC3

probabilistic programming library in Python [36]. PyMC3 is built

on Theano [40] and has built-in implementations for MCMC al-

gorithms and Variational Inference methods. We formulated the

different components of the state space model and set the prior

distributions for the model parameters. We deployed our methods

on a system with 16 GB RAM system and I7 processor. The initial

version of the codes is available in the BSSP Github repository.

4 ANALYSIS
In this section we provide two case studies. In the first test case we

compare the results with small dataset to contrast and compare the

gray-box models’ solutions with the Kalman filter and Bayesian

state space model. In the second case study, we present results and

analyses on larger scale data from the Dataport Dataset [1].

4.1 Case Study I: Exploratory Study on a
Benchmark Dataset

4.1.1 Dataset. We compare the results with the benchmark

dataset provided in [3] and the circuit assumptions of the house

mentioned in the paper. The data is from a Flexhouse in Risø DTU in

Denmark, and was collected during a series of experiments carried

out in February to April 2009, where measurements consist of five

minute values over a period of six days. The dataset consist of a

single signal representing the indoor temperature (y ◦C). Observed
ambient air temperature at the climate station (Ta ◦C). Total heat

input from the electrical heaters in the building (Φh kW). The global

irradiance was measured at the climate station (Φs kW/m2
).

4.1.2 Problem Formulation. First we constructed all the models

suggested in [3]. The CTSM [25] package can be used to model

Continuous Time Stochastic Processes which is realized using an

Extended Kalman Filter (EKF). We define R, C, and A to be the

set of resistances, capacitances and area of solar infiltration for

individual models. The three models which we chose for inspection

and their system dynamics as follows:

• Ti Model: Here the house as a whole is assumed to have one

thermal resistance (Ria ) and capacitance (Ci ).

Ti (k + 1) = (1 −
1

RiaCi
) ×Ti (k ) +

1

RiaCi
×Te (k + 1) +

1

Ci
× Φh (k + 1)

+
Aw
Ci

Φs (k + 1) + σi (13)

Yk = Ti (k ) + ek (14)

• TiTeModel:Weprovided a detailed description of formulation

using the TiTe model in Section 3.2.

• TiTeTh Model: The three state model represents the interior

subscripted by i, the exterior subscripted by e and the heater

subscripted by h. The formulation for the three states are as

follows:

Ti (k + 1) = (1 −
1

RieCi
) ×Ti (k ) +

1

RieCi
×Te (k + 1) +

Aw
Ci
× Φs (k + 1) + σi

(15)

Te (k + 1) = (1 −
1

RieCe
−

1

ReaCe
) ×Te (k ) +

1

ReaCe
×Ta (k + 1)

+
1

RieCe
×Ti (k + 1) + σe (16)

Th (k + 1) = (1 −
1

RihCh
) ×Th (k ) +

1

RihCh
×Ti (k + 1) +

1

Ch
× Φh (k + 1) + σh

(17)

Yk = Ti (k ) + ek (18)

4.1.3 Results Discussion. We show the results of the first case

study in Table 1. We provide themean and variances (µ, σ ) of the
estimated model parameters – R, C and Aw, within a 95% credible

interval range as shown in Table 1. The total R and total C the

composite thermal resistance and capacitance of the building. We

compare the results of Bayesian Inference with the point estimates

with an Extended Kalman Filter (EKF). The insights from the study

are as follows:

Estimated model parameters: From the Table 1 we found that

the mean of the credible interval for the estimated parameters for

the Bayesian approaches is similar to that of the EKF point estimate.

The EKF assumes the parameters to have uniform priors and thus

performs MLE for estimation. An approximate ADVI provides a

similar parameter estimation as that of an equivalent run of MCMC

inference.

Comparison with the point estimates: A direct comparison of

the model’s performances between the Bayesian methods and the

EKF is difficult. We take the mean of the parameter estimated from

Bayesian inference and then perform a one-step-ahead prediction

and compare that with the EKF. The metrics used for comparison

are the root mean squared (RMSE) and the normalized root mean
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Table 1: Results of Study I

Model Method Total R Total C Ria Rie Rih Rea Ci Ce Ch Aw Ae NRMSE

(%)

RMSE

Ti

EKF 5.29 24.797 5.29 - - - 2.06 - - 7.89 - 0.4 0.06

MCMC 5.29,

0.06

24.96,

0.36

5.29,

0.06

- - - 24.96,

0.36 -

- - 7.95,

0.675

- 0.8 0.10

ADVI 5.29,

0.67

24.75,

0.40

5.29,

0.067

- - - 24.73,

0.43

- - 7.87,

0.675

- 0.4 0.05

TiTe

EKF 5.36 39.17 - 5.17 - 0.19 19.99 19.18 - 23.78 - 0.3 0.04

MCMC 5.27,

0.17

89.95,

7.92

- 1.73,

0.056

- 3.54,

0.122

21.39,

0.30

68.56,

7.91

- 10.75,

0.64

- 0.3 0.04

ADVI 5.29,

0.002

25.31,

0.86

- 1.98,

0.001

- 3.31,

0.002

24.49 ,

0.502

0.82,

0.008

- 7.90,

0.86

- 0.3 0.04

TiTeTh

EKF - - - - - - - - - - - - -

MCMC - - - 159.13,

273.83

70.23,

159.81

23.08,

68.44

119.77,

206.30

121.85,

184.87

313.33,

342.47

15.52,

28.71

0.092,

0.60

- -

ADVI 2.8,

0.004

184.45,

13.58

- 2.176,

0.010

0.23,

0.003

0.63,

0.003

177.82,

83.22

2.05,

0.03

4.59,

0.097

52.76,

193.86

45.50,

181.90

- -

squared errors (NRMSE) of the one-step-ahead prediction and we

find that estimates from ADVI give us the best results (Table 1).

Time of execution to reach convergence: MLE estimates of

the EKF is the fastest as it does not require computation of the

full posterior distribution, however, it does not provide estimation

error over model parameters. The MCMC algorithm is the most

time consuming one, where we increase the number of steps and

check for convergence using Gelman-Rubin diagnostic. We selected

4 chains and an initial burn in 5000 steps which is intended to give

the Markov Chain time to reach its equilibrium distribution when

there is a random initial starting point. Compared to MCMC, ADVI

is much faster. For the TiTeTh model, we obtain no convergence

for the EKF or MCMC, i.e. the credible intervals are very wide. But

ADVI provides reasonable intervals for some parameters. We listed

the time of execution for the different approaches in Table 2.

Table 2: Results of Convergence for Study I

Model Method Convergence Time (Steps)

Ti

EKF 2.68s ( Steps = 39)

MCMC 30 min (Chains = 4, Steps = 5000)

ADVI 2.26min (Steps = 180000)

TiTe

EKF 14.65s (100)

MCMC 1.5 hrs (4,5000)

ADVI 2:38 min (Steps = 180000)

TiTeTh

EKF No Convergence

MCMC No Convergence

ADVI 4.23min (Steps = 180000)

(a) Ti model

(b) TiTe model

Figure 6: Monte Carlo Simulation of Indoor Temperature

Monte-Carlo simulation: We perform a Monte-Carlo simula-

tion to generate the possible indoor temperature scenarios when

weather and HVAC usage is provided. In Figure 6 we show the re-

sults of the simulated prediction for the Ti and TiTemodels, drawing

samples from the inferred parameter distributions. We considered

the starting state to be drawn from a N(70, 5) distribution, i.e. our
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(a) ARIMAX
(b) Ti Model (c) TiTe Model

Figure 5: Comparison of Forecasting

guess for the indoor temperature will be within the range of 60 -

80
◦
F. The simulated prediction shows that the actual value of the

indoor temperature is enclosed within the credible region. It, how-

ever, deviates in certain sections, which we hypothesize is because

the thermal mass of a house can change with varying temperature.

The RC constant [8] of the data changes with time as the thermal

mass C of a house can vary, due expansion (or contraction) of air.

A more generalized formulation of thermal dynamics will require

exploring longitudinal studies that to correlate between the param-

eter and temperature changes with the heater and cooler usage for

long duration.

Qualitative assessment of the hidden states: In Figure 7, we

show the learned hidden states of the two-state TiTe and three

state TiTeTh model. For the TiTe model shown in Fig 7a, show

that the estimated hidden state for the envelope is sandwiched

between the indoor temperature and the outdoor temperature and

is more correlated with the indoor temperature. Whereas in the

TiTeTh model (Fig 7b) the envelope state is more correlated with

the outdoor temperature. However, the heater’s temperature is the

same as that of the indoor temperature, which implies it does not

capture an independent factor of the hidden state space. The plots

in Fig 7 show the error margin of the hidden states obtained from

the highest posterior distribution.

Table 3: Results of Forecasting

Method MAPE % of data within 95%

forecast interval

ARIMAX 0.19 100%

Ti Model 0.05 78%

TiTe Model 0.04 79%

Forecasting: We compared the forecasting results of the BSSM

with an auto-regressive integrated moving average with exoge-

nous variables (ARIMAX). We used the first 5 days for training the

BSSM and learn the building parameters. We then used the learned

parameters to obtain a day ahead forecast within 95% prediction

interval, as presented in Algorithm 1. Our assumption is that the

heater stays in the same state as the last known state and assumed

that the solar radiation and temperature data are available. In Fig-

ures 5a – 5c we show the output of forecasting for the ARIMAX,Ti
and TiTe models. For quantitative evaluation we chose the mean

absolute percentage error (MAPE) to find the error in mean of the

(a) Hidden States of TiTe model

(b) Hidden States of TiTeTh model

Figure 7: Visualizing Hidden State Dynamics

forecast and calculated the percent of data within 95% forecast

interval as shown in Table 3. The mean forecast error is lower in

case of the BSSM models as they better learn the dynamics of the

process. However, as the model parameters have a narrow credible

interval, the actual data lies outside the forecast interval in but

provides a narrower band for which the actual value partially lies

outside the credible interval. In contrast, the forecasting result of

ARIMAX has less correlation, although the actual forecast is within

the confidence interval.
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Table 4: Results of Case Study II

Homes HVAC Mode R-Value Informed Priors Hyper Priors Uninformed Priors

R C R C R C

No Usage 26, 0.02 85.92, 12 53.24, 14.99 81.6, 10.86 449.04, 431.90 80.82 , 10.71

484 AC 26 26, 0.02 85.03 , 12.5 52.12, 15.33 80.81, 11.08 453.73, 428.96 80.25, 10.99

Heater 26, 0.02 132.44 , 12.79 75.87, 15.9 89.35, 11.7 343.63 , 276.16 81.48 , 11.73

No Usage 6.1, 0.23 73.15, 18.84 61.82, 14.46 15.43, 1.945 62.1 , 14.33 15.33, 2.005

739 AC 6 6.1, 0.23 64.09, 20.7 58.88, 10.87 15.55, 1.79 59.47, 10.43 15.65, 1.84

Heater - - - - - -

No Usage - - 24.52, 0.215 103.4, 7.34 48.66, 20.91 107.42, 7.56

1507 AC NA - - 23.58, 0.215 103.52, 7.89 47.65, 21.95 107.88, 7.55

Heater - - 23.58, 0.23 104.65, 8.79 52.22, 26.62 108.84, 8.38

4.2 Case Study II: Prior Selection & Transfer
Learning

4.2.1 Dataset. TheDataport dataset is a publicly available dataset,
created by Pecan Street Inc, which contains building-level electric-

ity data from 1000+ households. We performed our experiments

on three single-family homes from Texas (dataid = 484, 739, 1507)

based on metadata availability and proper registration of indoor

temperature and HVAC usage data. The metadata, which has infor-

mation about 52 homes, provides a general understanding about

the buildings and helps us create prior distributions over the R-

values. Here, House 739 does not have heating data available and

the metadata does not include a measure for House 1507’s R-value.

We ran our experiments on over 30 other homes but due to im-

proper registration of the indoor temperature data, we can evaluate

our experiments only on 3 homes.

4.2.2 Experimental setup. In this case study we explore the ef-

fects of prior selection and transfer learning. The two processes

are inherently tied together, since in the Bayesian approach, “to-

day’s posterior becomes tomorrow’s prior.” Our approach here is

to learn the parameters from the AC usage season, where data is

more consistent, and transfer the learned parameters as priors to

seasons when HVAC has typically no usage and/or operates in

heating mode. This is because we don’t have the exact measure

of the thermal flux from the HVAC but only the “ON” and “OFF”

values from the furnace. Hence, we have to consider the thermal

flux multiplier as an extra parameter during the heating mode and

set an uninformed flat gamma prior. Due to the addition of an extra

unknown parameter, estimation during heating phase is less con-

sistent than that of in the cooling period. We investigate the effect

of three sets of priors:

• Informed Priors (Set 1): We select informed gamma priors.

This is useful when we have some notion about the parame-

ters’ values such as an initial audit to estimate the R-value

of a building. We select a strong prior on the R-value where

the mean of the R-value is same as that of the estimate and

the standard deviation is 1.

• Hyper Priors (Set 2): In this set, we do not have a direct

estimation regarding the buildings’ parameters but have

a vague understanding about the expected value from the

metadata. We encode such beliefs by setting a hyper-prior

for the mean, that is sampled selected from a mixture of

lognormal distributions. We empirically found that R-values

are a mixture of lognormal distributions, conditioned on

the year built and conditioned square foot, by performing a

maximum likelihood estimate. The estimated parameters of

the two lognormal distributions as shown in Fig 1, are (µ0,
σ0) = (3.02, 0.59) and (µ1, σ1) = (3.43, 0.50), respectively.

• Uninformed Priors (Set 3): Finally, in Set 3, we chose unin-
formed flat gamma priors for the R-values, where, we have

no knowledge of the buildings’ parameters. In all three cases

we set a flat gamma prior on the C-values.

For all three cases, we set an upper bound on the R-values to be

70, which we found from the metadata. We assign an uninformed

gamma prior on the C values. For all cases, we initially estimate

for the AC usage scenario and use the mean and variance of the

estimated parameters to set the prior for the other seasons. The sign

of the heat flux, as provided in Eqn 8, is negative when AC is used

and the HVAC is in cooling mode. We do not have an exact value for

heater’s flux but we use the furnace which provides the binary “ON-

OFF” signal of the heater and multiply an extra unknown parameter

Φh to estimate the heat flux. Similarly to the previous section, we

estimate all parameters within a 95% credible interval. We also

varied the size of the dataset of sizes [200, 500, 1000, 2000, 5000].

4.2.3 Results. The prior selection directly influences the value

of the parameters, parameter transfer and depends on the size of the

dataset. A summary of the results is presented in Table 4 for 2000

data points, which provides us the most likely parameter estimates.

We present the result in the form of mean and the error margins

i.e. (µ, ±ϵ). We find that the Informed Priors provide us with the

most consistent estimates both across size of the datasets and when

we perform transfer learning. As shown in Fig 8a, the informed

parameters remain consistent with the change in the size of the

dataset with very little margin of error (± 1). Parameter transfer

also works best when informed priors are applied (Fig 8a), but can

provide us different estimates when being transferred from AC

usage to Heater usage seasons. The hyper-priors reduce the margin

of error when applied for smaller datasets. For example, in Fig 8c,

the R-values have large error margins when uninformed priors are

chosen, which is significantly reduced when hyperpriors were used

Fig 8b.

4.2.4 Discussion. Information in the data overwhelms prior

information not only when the size of the dataset is large, but also
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(a) Informed Prior set on R-values (b) Hyper Prior set on R-values (c) Uninformed Priors

Figure 8: Results of Prior selection & Parameter Transfer for House 484

when the prior encodes relatively small information. For example

in House 739 (Table 4), an approach using uninformed priors will

try to get the best estimate that fits the data, but the parameters

may not be accurate. For this case, a sharp prior centered around

an initial estimate gives the best result. Uninformative priors are

easily persuaded by data, while strongly informative ones may be

more resistant. When the size of the dataset is small, hyperpriors

effectively reduce the margin of error in parameter estimation

Fig. 8b.

4.3 General Recommendations
Based on our studies, we recommend constructing a Bayesian state

space model customized for the problem at hand, carefully select-

ing the system dynamics and priors. We suggest using ADVI for

parameter estimation as it provides similar estimates but is faster

than MCMC. Although the Bayesian approach provided us with

similar estimates as that of EKF in Case Study I, the former is better

suited for constructing hierarchical models with multiple priors on

model parameters. On the otherhand, EKF can only provide point

estimates with uninformed priors. In realistic settings, it is better to

perform an initial audit to determine the home’s insulation param-

eters and fix an informed prior on the parameter set. We suggest to

use informative priors, if enough metadata is available to set them

reliably. However, if the objective is to monitor a large set of homes,

we recommend setting a hyper prior based on the beliefs from a

sample of the dataset. If the heat flux is known from the HVAC,

learning from one season and applying it to another can improve

estimation.

5 CONCLUSION & FUTUREWORK
In this paper, we proposed and systematically studied Bayesian

statistical approaches to buildings’ thermal parameter estimation.

We developed a generalized state-space modeling framework that

integrates building physics equations with a statistical model. The

model estimates buildings’ structural parameters which influence

the indoor temperature conditioned on HVAC usage and weather

factors. We contrast model learning using MCMC and ADVI algo-

rithms and show that Variational Inference is faster and provides

a similar estimation to MCMC. A visual inspection of the hidden

states was employed to assess the model dynamics, and we found

that merely increasing model complexity does not capture any sig-

nificant factors of the thermal characteristics. We further showed

the model’s applications, such as simulating probable outcomes

and forecasting the future. The effects of prior selection on the pa-

rameter estimation were studied in detail. We found that informed

priors provide the best estimates, but when such information is

not present prior beliefs can help to better learn the models. Also,

we found that priors are key to transfer learning, and model pa-

rameters learned from one season can be used to model thermal

dynamics under the condition that properly scaled exogenous data

is available.

The focus of our future research is in two directions. We are

presently instrumenting several homes with smart thermostats and

temperature sensors. This study serves as a guide to large-scale

analysis as we attempt to further incorporate air leakages and con-

struct room level thermal behavior analysis. We plan to learn from

the data that is being collected longitudinally and incorporate the

learned models in NEST thermostats to monitor homes’ condition

continuously. Secondly, we will focus on incorporating air-leakage

into the framework and correlating with standardized metrics such

as ACH50. Common air-infiltration models (e.g. LBL model [37]),

have complex non-linear characteristics for which we will explore

non-linear state space models.
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